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A semiempirical equation of combinatory entropy in ternary solutions containing two semiflexible polymers 
and flexible and semiflexible polymers in solvent has been derived, based on a previous equation for a 
binary polymer solution. The partial entropy of mixing for solvent, ASu.o, in the ternary system 
polymer (1)-polymer (2)-solvent (0) is expressed by: 

ASM.o/k = - In  ~b o + a -  1 + ln[a/(a + b)] + b + k 1 ~bl 2 ln{[r~ -1 + k~(1 - ~b 0]/(a + b)} 

+ kE~b 2 In{Jr 2 ' + k2(1 -- ~2)]/(a + b)} 

where a = ~b o +(t~l/rl)+(~P2/r2), b = kN51(1 - ~bl)+ k 2 ~ 2 ( 1  - t ~ 2  ), ~b i is the volume fraction of component i, and 
ki is a constant characterizing the flexibility of polymer, for example ki = 0 for a flexible polymer and k i > 0 for 
a semiflexible polymer. Values of partial entropy of mixing for polymers, ASM,~, are evaluated in the ternary 
solution of two polymers with different flexibilities in solvent. The combinatory entropy in a binary 
polymer-polymer system is also discussed. 
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I N T R O D U C T I O N  

The combinatory entropy in ternary systems containing 
two polymers is very important in discussing thermo- 
dynamic properties of solutions such as phase equilibria. 
The Flory-Scott  lattice theory L2 is the most simple and 
useful theory for ternary systems containing two flexible 
polymers in solvent, where random mixing is assumed. 
Rubio and Renuncio 3 have derived an approximate 
expression for the combinatory entropy in a binary 
polymer-solvent system based on the concept of local 
composition in non-random mixing. The effects of 
orientation of polymer on the combinatory term are 
discussed by DiMarzio 4. Huggins 5 has pointed out that 
the orientational randomness of segments of chain 
molecule and its concentration dependence also affect the 
combinatory entropy. Silberberg 6 has obtained the 
Flory-Huggins equation 1 by a different approach, and 
its extension to polymer mixtures has been discussed by 
Koningsveld and Stepto 7. In a previous work s a new 
parameter was introduced, reflecting the flexibility of 
polymer chain and predicting phase separation behaviour 
in a binary solution of semiflexible or rod-like polymer 
in solvent solely due to the combinatory entropy term, 
which is consistent with the results of Onsager 9 and 
Ishihara ~ o. 

This work presents an extension of the previous work 
to a ternary system containing two polymers with 
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different flexibilities, to find the basic properties of the 
ternary system and also a binary polymer-polymer 
system. 

CORRELATION BETWEEN THE COMBINATORY 
ENTROPY IN TERNARY POLYMER SOLUTION 
AND TERNARY SIMPLE LIQUID SOLUTION 

The number of configurations for a ternary simple liquid 
solution, f~SM, with molecules of nearly equal size or an 
ideal liquid solution is given by: 

~SM =(No + N1 + N2)!/(No!NI!N2!) (1) 

where N i is the number of molecules of component i. On 
the other hand, the number of configurations in the 
ternary system containing N 1 molecules of polymer 1 
with r 1 segments per polymer, N 2 molecules of polymer 
2 with r 2 segments and N O molecules of solvent is given 
by the Scott theory 2 and is expressed in a more simple 
form byS: 

~ P j  - P ~ - S  - -  P¢~I ~h(rx - 1)NIrh(r2-  1)N2 
_ - -  "-~a aideal W 1 W2 (2) 

where C is the intramolecular factor for polymers 1 and 
2 and does not affect the combinatory entropy of mixing, 
and Qido,l is an ideal mixing term for the dismemberment 
of polymers to tiN1 and r2N 2 segments, defined by: 

~ideal ~--- (No + rlN1 + r2N2)!/ENo!(rlN1)!(r2N2)!] (3) 



and 4i (i = 1, 2) is the volume fraction of i: 

41 = r iN, /N,  (4) 

where N t = N o + r lN~ + rzN z. The procedure to obtain 
equation (2) is the same as that in the binary solution 
(equation (7) in ref. 8). The quantities 41"- 1)N, in equation 
(2) mean a probability that the (r~-1)N~ segments are 
fixed at certain (r~- 1)N~ different positions in the lattice. 
Equation (2) expresses the number of configurations in 
an ideal ternary system with N o, r l N  1 and r z N  2 different 
molecules under the condition that (r 1 -  1)N 1 of l and 
(r 2 -  1)N 2 of 2 are fixed in different positions in the 
lattice s. If the polymers in the ternary system are N1 rods 
with an axis ratio r~ for polymer 1 and N 2 rods with the 
ratio r E for polymer 2, the number of configurations for 
the ternary rod system is equal to that of an ideal mixture 
of No, Nt  and N 2 different molecules and is given using 
the same procedure as equation (14) in ref. 8: 

~'~Rod = (No + S ,  + S2)[/(No !N~ !N2 !) (5) 

= ~ia,~t{rzNz(rzNz - 1)" • "(N2 + 1)r lNt ( rxNi  - 1)'" 

• " "(Nt + 1)/[Nt(N t -  1)'"(N 1 + N 2 + N O + 1)]} (6) 

Equation (6) is derived by using ~d¢,l in equation (3). 
It is found from equations (5) and (6) that f~Rod 

corresponds to fliae~l under a condition that (r~- 1)N i of 
molecule i are removed from the lattice or combined with 
the rest of N~ molecules to make N~ long or big molecules 8. 

DERIVATION OF THE COMBINATORY 
ENTROPY IN THE P O L Y M E R - P O L Y M E R -  
SOLVENT SYSTEM 

It is important to discuss a correlation between the 
entropy of mixing in ternary systems with two types of 
rods of different axial ratios and with two flexible 
polymers of different molecular weights in deriving the 
combinatory entropy in a ternary system. The partial 
entropy in the ternary rod solution is given from equation 
(5) by: 

ASM,o/k = - In 40 + ln[1 - 41(1 - r~- 1) - -  42(l _ r2 1)]  

(7) 

,-~ --In 4 o + a -  1 41~0,  q52~0 

(8) 
ASM, 1 / r l k  = - r? 1 In 41 + r~- 1 ln(r14 ° + 41 + r l r ;  t~b2) 

(9) 

~ - r i l l n d p l + a - r ;  1 40--*0,  42  ---~, 0 

(lO) 
A S M , 2 / r 2  k = _ r21 In 42 + r21 ln(r2~bo + r~- lr241 + 42)  

(11) 

=- - r21  l n 4 2 + a - - r 2 1  ~bo~0, 4 1 ~ 0  

(12) 

On the other hand, the partial entropy of mixing in the 
ternary system with two flexible polymers is derived by 
Scott 2 and is given by: 

ASM,o/k = - I n  40 + a -  1 (13) 

ASM,1/rl k = _ r l  1 In 41 -']- a -- r~- 1 (14) 

ASM,z/r2 k = _ r  21 In 42 + a - r ;  1 (15) 

Study o f  combinatory entropy in solutions. 2. S. Saeki 

where quantity a is defined by: 

a = 4o + 41/rl  + 42/r2 (16) 

It is obvious that ASr~,~/r~k in the rod 1-rod 2-solvent 
system at the limit of 4;-*0 and 4k~0, i ¢ j # k ,  is equal 
to that for the system with two flexible polymers-solvent 
or that in the Flory-Scott theory. 

It is assumed in this work that the number of 
configurations for a ternary system containing two 
polymers with different flexibilities, such as a rod-like 
polymer and a flexible polymer, in solvent is expressed 
based on equations (2) and (6) by 

~(r2 1)N2-x4(lrl- 1)~v2-y 
~'~ ~" ~"~idealW2 - 

× {(N o + N1 + N2)!(N2 + x)!(N1 + y)!/ 

[-(No + N1 + N2 + x + y)!N 2 !N1 !]} (17) 

The partial entropy of mixing calculated by equation (17) 
is given by: 

ASM, o = - -  In 4)o + a-- 1 + ln[a/(a + b)] + b 

+ k 1 ~b 2 In{ [(ri- t + kt(1 _ 4 0]/(a + b)} 

+ k 2 4 2 1 n { [ r ; 1 + k 2 ( 1 - 4 2 ) ] / ( a + b ) }  (18) 

ASM,1/rlk = -- r~ 1 In 41 + a - r~- 

+ r~- 1 In{a[1 + ktrl(1 - 41)]/(a + b)} + b 

- k , ( 1  - 4 '1 )  + k , ( 1  - 4 , )  2 

x ln{[r~ -1 + kl(1 - 4 0]/(a + b)} 

+k2422 In{[r~ -I +k2(1-42)] /(a+b)} (19) 

ASM,2/r2 k = _ r21 In ~b 2 + a - r 21 

+ r21 In{a[1 + k2r2(1 - q~2)]/(a + b)} + b 

- k2(1 - ~b2) + k2(1 - 42) 2 

x ln{[r21 + k2(1 - #52)]/(a + b)} 

+ k x 4 2 1 n { [ r x '  + k l ( 1 - c b , ) ] / ( a + b ) }  (20) 

where b = k 1 4 1 ( 1 - 4 0 + k 2 4 2 ( 1 - 4 2 )  and it is assumed 
that x and y are given by: 

x = k 2 r 2 N 2 ( 1 - 4 2 )  (21) 

and 

Y = k t r , N , ( 1  - 4 0  (22) 

where k~ and k 2 are constants. Parameters x and y in 
equations (21) and (22) are determined as follows. It is 
demonstrated in the comparisons between equations (8), 
(10) and (12) and equations (13), (14) and (15) that the 
partial entropy of mixing in the ternary rod polymer 
solution approaches that for the ternary flexible polymer 
solutions corresponding to x = 0  and y = 0  at infinite 
dilution. One of the simple expressions satisfying a 
condition that both x and y approach zero in each of 
three cases - -  (i) 4 ~ 0  and ~b/~0; (ii) 40--,0 and 41~0;  
and (iii) 40--,0 and q~2~0 - -  is given by equations (21) 
and (22). Equation (17) and parameters x and y in 
equations (21) and (22) in the ternary system are 
extensions of equations (21) and (22) in the binary system 
of ref. 8. 

RESULTS 

Calculation of ASM,Jrlk for various values of kl and k 2 
has been carried out by using equations (18), (19) and 
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Figure 1 Plot of ASM,o/k versus dp 2 in the ternary solution of polymer 1 with segments r 1 = 1000 and polymer 2 with r2 = 1000 and constant 
concentration of solvent, q~o=0.1 and 0.3, calculated by equation (18) for various polymer pairs: O, flexible polymer 1 with kl =0 and flexible 
polymer 2 with k2 =0; A, polymer pair of flexible polymer k~ =0 and semiflexible polymer k2 = 1; &, polymers with kl = 1 and k2 =0; @, polymers 
with kl =k2= 1 

(20) with r 1 = r 2 -- 1000; the results are plotted in Figures 1 
and 2. The ASM.o for the flexible polymer pair is 
independent of 4,2 due to rl = r2 = 1000 in this case. The 
ASM.o for the ternary solution of flexible and semiflexible 
polymers in solvent, such as kl = 1 and k2=0 or k~ =0  
and k2 = 1, increases with increasing concentration of 
flexible polymer in the solution; however, in the ternary 
solution of two semiflexible polymers in solvent, such as 
kl = k 2 = 1, the ASM, o has a maximum point in solutions 
with concentration ¢0 >0.3 and two minimum and one 
maximum points for 4,o<0.1. In the cases of ASM.#rik 
for polymers, the value of ASM,1/rlk is essentially the 
same as ASM,2/r2k, as expected from equation (17) if the 
subscripts 1 and 2 are exchanged. 

There are four types of ASM,~, which are characterized 
by the entropy change when: (i) a flexible polymer is 
dissolved in the ternary solution of two flexible polymers 
in solvent (k 1 = k 2 = 0); (ii) a flexible polymer is dissolved 
in the ternary solution of semiflexible and flexible 
polymers in solvent (k I = 1 and k 2 - 0 or k~ = 0 and k 2 = 1); 
(iii) a semiflexible polymer is dissolved in the ternary 
solution of (ii); and (iv) a semiflexible polymer is dissolved 
in the ternary solution of two semiflexible polymers in 
solvent such as kl = k 2 = 1• It is shown in Figure 2 that 
values of ASM,I/r~k for the system k , = k 2 = 0  increase 
linearly with increasing q~o at constant ~b~. Values of 
ASu. 1/rlk for k l = 0 and k 2 = 1 increase with increasing 4'o 
except for the low concentration region where a minimum 
point is observed at ~bl<0.3. However, values of 
ASM,1/rlk for k1=1 and k 2 = 0  and for k l = k 2 = 1  
indicate quite different values and are dependent on 
4, o at the lower concentration range but approach a 
value corresponding to that of the binary solution of 
semiflexible polymer (kl = 1) in solvent at higher values 
of q5 o. At very high concentrations of polymer 1, such as 
~b~ = 0.9, ASM.~/r~ k is almost constant in the systems kj = 0 
and k 2 = l  or k l = k 2 = l ,  while for k l = k 2 = 0  or k , = l  
and k 2 = 0 ,  ASu.1/r~k increases with increasing ~b o and the 
values approach each other. 
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Figure 2 Plot of ASM.l/rlk versus dpo in the ternary solution of 
polymers with the same segments as in Figure 1 and constant 
concentration of polymer 1, q~l =0.2 and 0.9, calculated by equation (19) 
for various polymer pairs: symbols as in Figure 1 

DISCUSSION 

It is interesting to discuss the physical meaning of 
quantities x and y in equations (17), (21) and (22). The 
parameters x and y express numbers of segments for 
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polymer 2 and 1, respectively, that exhibit rod-like 
properties in all the segments of semiflexible polymer 
chain; x = y = 0 therefore corresponds to flexible polymers 
with no rod-like character and the largest values of 
x = ( r 2 - 1 ) N  2 for polymer 2 and y = ( r , - l ) N 1  for 
polymer 1 correspond to the rod polymer with an axial 
ratio of r E for polymer 2 and r 1 for polymer 1. There is 
a basic relation for the combinatory entropy in the ternary 
solution that when the solution approaches the pure 
state, such as 4,o--*0 and ~bl-+0, the number of 
configurations approaches that of the Flory-Huggins 
theory and then approaches configurations of the pure 
state irrespective of the properties of pure components 
such as flexibility, as is demonstrated in equations (7) to 
(15). In other words, values of x and y approach zero 
when 4, i and (pj (i #j) approach zero. The expressions of 
x and y in equations (21) and (22) satisfy the above 
conditions and also relate to the amount of solvent and 
segments of polymer j around polymer i, which increases 
with increasing rod-like properties of polymer chain i. A 
detailed discussion is given in ref. 8. 

It is also interesting to discuss the combinatory entropy 
in a binary polymer 1-polymer 2 system with various 
flexibilities of polymers. The partial entropy of mixing 
for polymers in the binary solution is calculated from 
that in the ternary system polymer-polymer-solvent in 
equation (19) with d)o-+0: 

ASMj/rlk = (-r-~ 1 In q51 + a* -- r~- 1) 

+ {r~- 1 In[a*(1 + klr 1 q52)/(a* + c)] + c 

--kl 4)2} + {klq~ 2 ln[(r~ -1 + kl ~b2)/(a* + c)] 

+k2$21n[(r21+k2~x)/(a* +c)]} (23) 

where a* = ~b 1/rl + dp2/r 2 and c = (k I + k2)~b 1~b2. Two types 
of behaviours are observed in Figures 3 to 5, which show 
plots of ASMyr lk  against 4,2. The first type is observed 
in the systems with kl =k2 =0  and with k~ = 1 and k2 = 0  
which correspond to cases where a flexible polymer and 
semiflexible polymer are dissolved in a matrix of two 
flexible polymers and a matrix of a semiflexible and 
flexible polymer pair, respectively, and is characterized 
by the fact that there is no maximum point in the plot of 
Figure 3. The second type is observed in the systems of 
k~ = 0  and k 2 = 1 and of k~ = k  2 = 1 where a flexible and 
semiflexible polymer are dissolved in a matrix of 
a flexible and semiflexible polymer pair and two 
semiflexible polymers, respectively, and is characterized 
by a maximum and a minimum point in the plots of 
Figures 4 and 5. 

A basic explanation of these behaviours is that the 
number of configurations in a binary solution of two 
flexible polymers is much larger than that in semiflexible 
polymers with the same molecular weights. There is 
therefore a possibility of a greater increase in the number 
of configurations in the semiflexible polymers than in the 
flexible polymers or there is a possibility of a greater 
decrease in the number of configurations in the flexible 
polymers than in the semiflexible polymers when a 
polymer chain is introduced into these binary polymer 
systems. In the case of a matrix containing flexible and 
semiflexible polymers, the tendency for variation in the 
number of configurations in the solution rich in flexible 
polymer is different from that in the solution rich in 
semiflexible polymer. In other words, when a polymer 
chain with a certain flexibility is introduced into the 
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Figure 3 Plot of ASMj/rtk versus dp2 in the binary solution of polymer 
1 with r~=lO00 and polymer 2 with r2=1000 calculated by 
equation (23) for the semiflexible polymer k~ = 1 and flexible polymer 
k 2 = 0 pair; the lines I, II and III correspond to the first, second and 
third terms in equation (23) and ASMj/r,k = IV = I + II +III .  The values 
of I correspond to ASM,I/rlk for a binary solution of two flexible 
polymers or the Flory-Huggins  theory for polymer blends, and increase 
rapidly with the approach of ~b 2 = 1.0 or ~b 1 = 0  
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Figure 4 P]ots of ASM.z/rzk versus ¢2 in the binary so]ution of flexible 
polymer k l = 0 ,  r, = 1000 and semiflexible polymer k2= 1, r2= 1000; 
description of lines is the same as in Figure 3, where ASM,1/rlk increases 
with the approach of 4, 2 = 1.0 due to the I term 

matrix of a binary polymer system, an entropy change 
due to (i) an increase of free space shared by molecules in 
the system and (ii) the formation of ordered or disordered 
regions may occur over the entire system; the change 
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Figure 5 Plots of ASm,l/rak versus q~2 in the binary solution of 
semiflexible polymer kl = 1, r I = 1000 and semiflexible polymer k 2 = 1, 
r 2 = 1000; description of lines is the same as in Figure 3 

depends strongly not only on the concentration but also 
on the packing state of the polymer chains in the matrix. 

An analysis of AS~,~/rlk in the binary polymer system 
has been made based on equation (23) and is shown in 

Figures 3 to 5, where ASM, x/rlk consists of three 
terms derived from: (i) the flexible polymer system in 
the Flory-Huggins theory; (ii) the semiflexibility of 
polymer chains through x and y; (iii) variation of x and 
y with respect to N 1 or dx/dN 1 and dy/dN~. The 
contribution of (i) is very small and (ii) is negative except 
in the system with kl =0  and k2 = 1 and k~ =k2---1 over 
low concentration of ~b 2, while that of (iii) is positive. The 
negative contribution in ASM,1/r~k indicates a formation 
of ordered regions in the system and the positive 
contribution indicates an increase of disordered regions 
over the entire system, although the individual changes 
of the entropy for polymers are not known in Figures 
3-5. The miscibility of a binary polymer system with 
various flexibilities may be discussed fully if the enthalpy 
of mixing in the system is evaluated. 
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